HW #1. Fuzzy ART Network

- Using the skeleton codes and referring to the procedure on p.3 of this ppt, fill the following 4 functions in ‘Fill’ folder:
 - complementCoding.m, activateART.m, matchART.m, and updateART.m

- In the report, discuss the following issues:
 - Deeper searches of previously coded categories with initial weights $w_{ji} > 1$.
 - The classification performance w.r.t. α, β, and ρ
 - # of categories
 - Fast-commit slow-recode option
 - Conservative limit by taking $\alpha \rightarrow 0$ to minimize recoding during learning
 - The performance for one-shot stable learning
• Complement coding for pattern generalization while avoiding the category proliferation problem
 - Note that pattern generalization is explained as follows:
 Input $I=(1, 0)$: distance 1 btw I_1 and I_2
 \rightarrow Complement coded input $I=\{(1, 0), (0, 1)\}$: distance $\sqrt{2}$ btw I_1 and I_2
 More discriminative for input patterns

• Strength and weakness of ART in comparison with K-Nearest Neighbors (KNN) and Support Vector Machine (SVM).

- Design your own ART network as a variant of the Fuzzy ART

- Submit the report along with main.m and the 4 programmed functions by zip file name: HW1_yourname.zip

- Due date: March 26, 2017

- Send to: yhyoo@rit.kaist.ac.kr
Fuzzy ART procedure

- Complement coding (*complementCoding.m*)
 - Let \(I = (I_1, I_2, \ldots, I_n) \) denote an input vector
 - Let \(x = (I, \bar{I}) \) be the activity vector (\(\bar{I} = 1 - I \))

- Code activation (*activateART.m*)
 - \(T_j = \frac{|x \land w_j|}{\alpha + |w_j|} \), where \(\alpha \) is a choice parameter, \(w_j \) is a weight vector that is linked to \(y_j \)

- Code competition
 - \(T_j = \max \{ T_j : \text{for all } F_2 \text{ node } j \} \)

- Template matching (*MatchART.m*)
 - \(m_j = \frac{|x \land w_j|}{|x|} \geq \rho \), where \(\rho \) is a vigilance parameter

- Template learning (*updateART.m*)
 - Select all \(i \) that satisfy \(x_i < w_{ij} \)
 - \(w_{ij} = \beta x_i + (1 - \beta)w_{ij} \)
HW #1. Fuzzy ART Network

Results

- **Original Input**

- **Learning rate: 0.5, vigilance: 0.2**

- **Learning rate: 0.5, vigilance: 0.5**

- **Learning rate: 0.5, vigilance: 0.8**
K-Nearest Neighbors (KNN)

- KNN stores all available cases and classifies new cases based on a similarity measure (e.g., distance functions)

- Requires three things
 - The set of stored records
 - Distance metric to compute distance between records
 - The value of \(k \), the number of nearest neighbors to retrieve

- To classify an unknown record
 - Compute distance to other training records
 - Identify \(k \) nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record, e.g., by taking majority vote

In case of \(k=1 \): Blue, \(k=3 \): Red, \(k=5 \): Blue
Support Vector Machine (SVM)

- Linear classifier
 - There are a lot of possible solutions for weight w and bias b of decision boundary
 - Some methods find a separating hyperplane, but not the optimal one according to some criterion of expected goodness, e.g., perceptron

- SVM finds an optimal solution
 - Maximizes the distance between the hyperplane and the ‘support points’ close to decision boundary
 - One intuition:
 If no points near the decision surface, then no very uncertain classification decisions

Decision boundary: $w_1x + w_2y + b = 0$
Support Vector Machine (SVM)

- SVMs maximize the margin around the separating hyperplane as known as large margin classifiers.
- The decision function is fully specified by a subset of training samples, the support vectors on maximum margin hyperplane.
- Solving SVMs is a quadratic programming problem.

- Find w and b such that $\rho = \frac{2}{\|w\|}$ is maximized.

 - For all $\{(x_i, y_i)\}$ where $y_i \in \{+1, -1\}$,

 $w^T x_i + b \geq 1$, if $y_i = 1$
 $w^T x_i + b \leq -1$, if $y_i = -1$