HW #1. Fuzzy Adaptive Resonance Theory

- Using the skeleton codes and referring to the procedure on p.3 of this ppt, fill the following 4 functions in ‘Fill’ folder:
 - complementCoding.m
 - activateART.m
 - matchART.m
 - updateART.m

- In the report, discuss the following issues:
 - Deeper searches of previously coded categories with initial weights \(w_{ji} > 1 \) (p.39).
 - The classification performance w.r.t. \(\alpha, \beta, \) and \(\rho \) (p.40)
 - Fast-commit slow-recode option (p.43).
 - Conservative limit by taking \(\alpha \rightarrow 0 \) to minimize recoding during learning (p.46).
 - The performance for one-shot stable learning (p.49).
 - Complement coding for pattern generalization while avoiding the category proliferation problem (p.44)

- Develop your own ART network as a variation of the Fuzzy ART
Submit the report along with *main.m* and the 4 programmed functions by zip file name: HW1_yourname.zip

- Due date: March 27, 2016
- Send to: yhyoo@rit.kaist.ac.kr
Fuzzy ART procedure

- Complement coding (complementCoding.m)
 - Let \(l = (l_1, l_2, \ldots, l_n) \) denote an input vector
 - Let \(x = (l, \bar{l}) \) be the activity vector \((\bar{l} = 1 - l)\)

- Code activation (activateART.m)
 - \(T_j = \frac{|x \land w_j|}{\alpha + |w_j|} \), where \(\alpha \) is a bias, \(w_j \) is a weight vector that is linked to \(y_j \)

- Code competition
 - \(T_j = \max\{T_j: \text{for all } F_2 \text{ node } j\} \)

- Template matching (MatchART.m)
 - \(m_j = \frac{|x \land w_j|}{|x|} \geq \rho \), where \(\rho \) is a vigilance parameter

- Template learning (updateART.m)
 - Select all \(i \) that satisfy \(x_i < w_{ij} \)
 - \(w_{ij} = \beta x_i + (1 - \beta)w_{ij} \)
Results

Original Input

Learning rate: 0.5, vigilance: 0.2

Learning rate: 0.5, vigilance: 0.5

Learning rate: 0.5, vigilance: 0.8