
Distributed Multiobjective
Quantum-inspired Evolutionary
Algorithm (DMQEA)

Si-Jung Ryu and Jong-Hwan Kim

Abstract Most of the multiobjective evolutionary algorithm inherently has
heavy computational burden, so it takes a long processing time. For this rea-
son, many researches for reducing computational time have been carried out,
in particular by using distributed computing such as multi-thread coding,
GPU coding, etc. In this paper, multi-thread coding is used to reduce com-
putational time and applied to multiobjective quantum-inspired evolutionary
algorithm (MQEA). In MQEA, nondominated sorting and crowding distance
assignment which take a long time are carried out in each subpopulation. By
multi-thread coding, the processes in each subpopulation can be performed
simultaneously. To demonstrate the effectiveness of the proposed distributed
MQEA (DMQEA), comparisons with single-thread and multi-thread are car-
ried out for seven DTLZ functions.

Key words: Multiobjective evolutionary algorithm, Distributed computing,
Quantum-inspired evolutionray algorithm, multiobjective quantum-inspired
evolutionary algorithm

1 Introduction

Quantum-inspired evolutionary algorithm (QEA) employs the probabilistic
mechanism inspired by the concept and principles of quantum computing,
such as a quantum bit and superposition of states [1, 2, 3]. In addition,
multiobjective quantum-inspired evolutionary algorithm (MQEA) was devel-
oped with the purpose of solving multiobjective optimization problems [4].

S.-J. Ryu and J.-H. Kim
Department of Electrical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-
701, Republic of Korea,
e-mail: {sjryu, johkim}@rit.kaist.ac.kr

1

2 Si-Jung Ryu and Jong-Hwan Kim

MQEA provides high quality solutions close to Pareto-optimal solution set
for multiobjective problems. Recently, preference-based sorting was applied
to the nondominated solutions in an archive of MQEA to reflect the designer’s
preference in sorting them and selecting one preferred solution out of them
[5, 6]. However, MQEA also has a heavy computational burden like other
multiobjective evolutionary algorithms. Especially, MQEA employs the non-
dominated sorting and crowding distance assiginment in the subpopulations,
which leads to heavy computational burden.

There have been many researches for reducing the computational load for
the multiobjective optimization problems [7, 8, 9]. This kind of research can
be divided into two major issues; algorithmic development and computing
power development. Firstly, researches in terms of algorithmic development
are progressed by modifying original algorithms efficiently and eliminating
unnecessary parts of algorithms. Secondly, researches in terms of computing
power development are progressed by distributing the computational burden
of algorithms using multi-thread coding or GPU coding. The latter has much
outstanding performance compared to the modification of algorithms.

In this paper, distributed computing is applied to develop distributed
MQEA (DMQEA) to reduce the computational burden. It is also efficient
to apply distributed computing to multiobjective evolutionary algorithms
because there are many processes which can be performed simultaneously
in the algorithms. Since subpopulation processes of MQEA are independent
each other, the processes in each subpopulation can be performed simulta-
neously. To compare the performance of the proposed DMQEA, experiments
are carried out for seven DTLZ functions.

The rest of this paper is organized as follows: MQEA is briefly introduced
in Section 2. Section 3 proposes DMQEA. The experimental results are dis-
cussed in Section 4 and concluding remarks follow in Section 5.

2 Distributed Computing for MQEA

2.1 QEA

Building block of classical digital computer is represented by two binary
states, ‘0’ or ‘1’, which is a finite set of discrete and stable state. In contrast,
QEA utilizes a novel representation, called a Q-bit representation [1], for the
probabilistic representation that is based on the concept of qubits in quantum
computing [10]. Quantum system enables the superposition of such state as
follows:

α|0〉+ β|1〉 (1)

where α and β are the complex numbers satisfying |α|2 + |β|2 = 1.

DMQEA 3

 !

 !"!

" #

!

!

"

 "

 !

" # !

Fig. 1: Qubit described in two dimensional space.

Qubit is shown in Fig. 1, which can be illustrated as a unit vector on the
two dimensional space as follows:

[

α

β

]

(2)

where |α|2 + |β|2 = 1. Q-bit individual is defined as a string of Q-bits as
follows:

qt
j =

[

αt
j1 αt

j2 · · · αt
jm

βt
j1 βt

j2 · · · βt
jm

]

(3)

where m is the string length of Q-bit individual, and j = 1, 2, ..., n for the
population size n. The population of Q-bit individuals at generation t is
represented as Q(t) = {qt

1
,qt

2
, ...,qt

n}.
Since Q-bit individual represents the linear superposition of all possible

states probabilistically, diverse individuals are generated during the evolu-
tionary process. The procedure of QEA and the overall structure for single-
objective optimization problems are described in [1, 2].

2.2 MQEA

Based on QEA, Multiobjective Quantum-inspired Evolutionary Algorithm
(MQEA) was developed to solve multiobjective problems [4]. MQEA is de-
signed by incorporating QEA with fast non-dominated sorting and crowding
distance assignment. MQEA provides the solutions close to Pareto-optimal
solution set for multiobjective problems. Overall procedure of MQEA is sum-
marized in Algorithm 1. Each step is described in the following.

4 Si-Jung Ryu and Jong-Hwan Kim

Algorithm 1 Procedure of MQEA

1: t←− 0
2: Initialize Qk(t)
3: Observe the states of Qk(t) and form Pk(t)
4: Evaluate Pk(t) and store all solutions in Pk(t) into P (t)
5: Copy the nondominated solutions in P (t) to A(t)
6: while (not termination condition) do

7: t ←− t+ 1
8: Make Pk(t) by observing the states of Qk(t− 1)
9: Evaluate Pk(t)
10: Form Pk(t) through the fast nondominated sorting and crowding distance sorting
11: Store all solutions in every Pk(t) into P (t)
12: Form A(t) by nondominated solutions in A(t− 1) ∪ P (t)
13: Migrate randomly selected solutions in A(t) to every Rk(t)
14: Update Qk(t) using Q-gates referring to the solutions in Rk(t)
15: end while

1), 2) In this step, Qk(0) is initialized with 1/
√
2, where i = 1, 2, ...,m,

j = 1, 2, ..., n, and k = 1, 2, ..., s. Note that m is the string length of Q-bit
individual, n is the subpopulation size, and s is the number of subpopulations.

3) Binary solutions in Pk(0) are formed by observing the states of Qk(0).
One binary solution has a value either 0 or 1 according to the probability
either |α0

i | or |β0

i | as follows:

x0

i =

{

0 if rand[0,1] ≤ |α0

i |2
1 if rand[0,1] > |α0

i |2.
(4)

4) Each binary solution, x0
j , in Pk(0) is evaluated. All the solutions in

Pk(0) are stored in P (0).
5) Archive A(0) is filled with nondominated solutions in P (0).
6), 7) The process terminates if the number of generation reaches the

termination number.
8), 9) Binary solutions in Pk(t) are generated through the multiple observ-

ing the states of Qk(t − 1) and fitness values are calculated for each binary
solution.

10) Individuals in the previous population and current population are
sorted by the fast nondominated sorting and the crowding distance sorting
and select n individuals [11]. Pk(t) is formed with n selected individuals.

11) All solutions in every Pk(t) are copied to P (t).
12) An archive A(t) is formed by nondominated solutions in the previous

archive and global population (A(t − 1) ∪ P (t))
13) Solutions in current archive are randomly selected and solutions in

every reference population are randomly replaced by the selected solutions.
Global random migration procedure occurs at each and every generation.

14) Fitness values in each subpopulation are compared, and then decided
the update direction of Q-bit individuals. the rotation gate U(∆θ) is employed
as an update operator for Q-bit individuals, which is defined as follows:

DMQEA 5

Previous archive, A(t-1)

Nondominated sorting

Reference binary sol. (n)

Parent (n)

Offspring(n)

Selected binary sol. (n)

Q-bit individual (n)

Q-gate

1st subpopulation

Fast

nondominated

sorting

Update

Multiple

observation

Reference binary sol. (n)

Parent (n)

Offspring(n)

Selected binary sol. (n)

Q-bit individual (n)

Q-gate

sth subpopulation

Fast

nondominated

sorting

Update

Multiple

observation

Global population (N)

Global

random migration

Current archive (l)

. . .

. . .

1st thread 4th thread

Single thread

Multi thread

Fig. 2: Procedure of the DMQEA.

qt
j = U(∆θ) · qt−1

j (5)

with

U(∆θ) =

[

cos(∆θ) –sin(∆θ)
sin(∆θ) cos(∆θ)

]

where ∆θ is the rotation angle of each Q-bit.

3 DMQEA

In recent years, computer-related technological advances such as multi-
threading and GPU processing enable to reduce the computing time signifi-
cantly. In this paper, DMQEA is proposed by applying multi-thread coding
into MQEA. The main difference of DMQEA compared to MQEA is that
each and every subpopulation, depicted in Fig. 2, goes through the evolu-
tionary process simultaneously. The details of the subpopulation process of
the DMQEA are as follows. Each subpopulation process is performed by the
corresponding thread. In this paper, four subpopulations are executed at one
time because experimental PC provides four threads. In this regard, thread

6 Si-Jung Ryu and Jong-Hwan Kim

Table 1: Parameter setting of the DMQEA for DTLZ problems

Parameters Values

The number of generations 3,000
The number of subpopulations (s) 4

The number of multiple observations 10
The rotation angle (∆θ) 0.23π

synchronization is needed in each and every generation because computa-
tional times of threads are all different. Therefore, it is required to wait until
all the thread processes are finished. And then, obtained solutions from the
subpopulations are stored in the global population. The rest processes of
DMQEA such as archive generation and migration are executed in single-
thread because they are affected by the other processes.

4 Experimental Results

Experiments were carried out under Intel Core i5 650 CPU which provides
four threads. Clock speed of PC is 3.20GHz and operating system is Win-
dows 7 32bit. Parameter setting for experiments is given in Table 1. The
experiments were carried out under three conditions of different sizes of the
subpopulation and different numbers of objectives. The number of variables
for each DTLZ function was set to 11 for DTLZ1, 16 for DTLZ2 to DTLZ6,
and 26 for DTLZ7 function if the number of objectives is seven. Otherwise,
the number of variables for each DTLZ function was set to 7 for DTLZ1, 12
for DTLZ2 to DTLZ6, and 22 for DTLZ7 function.

Table 2 shows the computation time of processing MQEAs by single-thread
and multi-thread with three different conditions on subpopulation size and
the number of objectives. As shown in the table, the processing time com-
puted by multi-thread is about 70% lower than that by single-thread.

5 Conclusion

This paper proposed DMQEA to reduce the computational time of MQEA.
The main difference of DMQEA compared to MQEA was that the processes
in each subpopulation are executed in the multiple threads. The reason why
distributed computing was applied to subpopulation processes is that they
contains heavy computational processes such as nondominated sorting and
crowding distance assignment. To demonstrate the effectiveness of the pro-
posed DMQEA, comparisons of MQEAs with single-thread and multi-thread

DMQEA 7

Table 2: Comparisons of computation times between single and multi-thread
MQEAs for seven DTLZ functions (unit: second)

(a) subpopulation size: 25, objectives: 7

Problem Single-thread Multi-thread

DTLZ1 501.0 315.1

DTLZ2 532.0 370.6

DTLZ3 585.1 446.0

DTLZ4 515.6 308.6

DTLZ5 528.4 414.6

DTLZ6 539.9 442.8

DTLZ7 591.1 473.4

Average 541.9 395.9

(b) subpopulation size: 25, objectives: 3

Problem Single-thread Multi-thread

DTLZ1 427.1 298.1

DTLZ2 455.3 304.3

DTLZ3 492.8 361.1

DTLZ4 445.9 245.9

DTLZ5 479.5 324.3

DTLZ6 471.5 349.1

DTLZ7 498.5 354.3

Average 467.2 319.6

(c) subpopulation size: 50, objectives: 3

Problem Single-thread Multi-thread

DTLZ1 1438.8 1013.5

DTLZ2 1466.6 1017.7

DTLZ3 1513.3 1331.5

DTLZ4 1452.0 987.5

DTLZ5 1515.3 1259.4

DTLZ6 1498.9 969.7

DTLZ7 1596.4 1032.5

Average 1497.3 1087.4

were carried out for seven DTLZ functions. Results showed that DMQEA
reduces an execution time significantly. However, DMQEA still has a prob-
lem of computation time to be applied to real time applications. Therefore,
it needs to be more improved as a future work.

8 Si-Jung Ryu and Jong-Hwan Kim

Acknowledgments.

This research was supported by the MKE (The Ministry of Knowledge Econ-
omy), Korea, under the Human Resources Development Program for Conver-
gence Robot Specialists support program supervised by the NIPA (National
IT Industry Promotion Agency) (NIPA-2012-H1502-12-1002).

References

1. Han, K.-H. and Kim, J.-H. (2002) Quantum-inspired evolutionary algorithm for a class
of combinatorial optimization. IEEE Trans Evol Computat 6(6): 580–593.

2. Han, K.-H. and Kim, J.-H. (2004) Quantum-inspired evolutionary algorithms with a
new termination criterion, Hε gate, and two phase scheme. IEEE Trans Evol Computat
8(2): 156–169.

3. Han, K.-H. and Kim, J.-H. (2006) On the analysis of the quantum-inspired evolutionary
algorithm with a single individual. Paper presented at IEEE Congress Evolutionary
Computation, pp. 9172–9179, 2006.

4. Kim, Y.-H., Kim, J.-H. and Han, K.-H. (2006) Quantum-inspired multiobjective evolu-
tionary algorithm for multiobjective 0/1 knapsack problems. Paper presented at IEEE
Congress Evolutionary Computation, pp. 2601–2606, 2006.

5. Kim, J.-H., Han, J.-H., Kim, Y.-H., Choi, S.-H. and Kim, E.-S. (2012) Preference-
based Solution Selection Algorithm for Evolutionary Multiobjective Optimization.
IEEE Trans Evol Computat 16(1): 20-34.

6. Ryu, S.-J., Lee, K.-B. and Kim, J.-H. (2012) Improved version of a multiobjective
quantum-inspired evolutionary algorithm with preference-based selection. Paper pre-
sented at IEEE Congress Evolutionary Computation, pp. 1–7, 2012.

7. Tan, K.C., Yang, Y.J. and Goh, C.K. (2006) A distributed Cooperative coevolutionary
algorithm for multiobjective optimization. IEEE Trans Evol Computat 10(5): 527–549.

8. Deb, K., Zope, P. and Jain, A. (2003) Distributed Computing of Pareto-Optimal Solu-
tions with Evolutionary Algorithms. Evolutionary Multi-Criterion Optimization, LNCS
2632: 534–549.

9. Tan, K.C., Tay, A. and Cai, J. (2003) Design and implementation of a distributed
evolutionary computing software. IEEE Trans Syst Man Cybern. C, Appl 33(3): 325-
338.

10. Hey, T. (1999) Quantum computing: an introduction. Computing and Control Eng J
10(3): 105–112.

11. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002) A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE Trans Evol Computat 6(2): 182–197.

12. Zitzler, E. (1999) Evolutionary algorithms for multiobjective optimization: methods
and applications. Berichte aus der Informatik, Shaker Verlag, Aachen-Maastricht.

	Main
	Return

